
© SoftBase, a division Fresche Solutions. All Rights Reserved.

Db2 is a registered trademark of IBM.

© SoftBase, a division Fresche Solutions. All Rights Reserved.

Db2 is a registered trademark of IBM.

Division of Fresche Solutions

z/OS Db2 Batch Design for High Performance

© SoftBase, a division Fresche Solutions. All Rights Reserved.

Db2 is a registered trademark of IBM.

Introduction

Neal Lozins

SoftBase Product Manager

All tests in this presentation were run on a dedicated zBC12 server

We used our products, Db2 DeadLock Advisor, Db2 Batch Analyzer,

and TestBase to develop and monitor the tests shown here

© SoftBase, a division Fresche Solutions. All Rights Reserved.

Db2 is a registered trademark of IBM.

Who is SoftBase?

DB2 z/OS testing and batch processing solutions

One of the original independent providers

▪ Founded 1987 in Asheville, NC

Who uses SoftBase?

➢ 5 of the top 10 US banks

➢ Many Federal and State Government Agencies

➢ 30% of private sector SoftBase customers are Fortune 500

© SoftBase, a division Fresche Solutions. All Rights Reserved.

Db2 is a registered trademark of IBM.

Why Batch vs On-line Transactions?

Most Companies Use Batch Processing to:

❑ Perform sporadic maintenance

❑ Perform Calendar related tasks

❑ Use night time cycles

❑ Garner better performance and throughput

Most batch processes can be done online with random access.

Some examples:

❑ Statement generation

❑ Billing

❑ Cash posting

❑ Claims

❑ . . .

The major reason to use batch is:

Performance and Throughput

© SoftBase, a division Fresche Solutions. All Rights Reserved.

Db2 is a registered trademark of IBM.

Why Tune Batch?

❑ Batch window gets smaller and smaller

❑ Risks of going outside the batch window

❑ IBM peak usage charge algorithm

❑ Many batch jobs are mission critical – billing, cash posting, …

❑ Batch often uses more resources than anything else in the shop

© SoftBase, a division Fresche Solutions. All Rights Reserved.

Db2 is a registered trademark of IBM.

I/O Bound vs CPU Bound

I/O Bound: A process is said to be I/O bound when trying to get more done causes

additional or slower I/O. An I/O bound process can benefit from faster I/O subsystems but not

by adding CPU power.

CPU Bound: A process is said to be CPU bound when no additional throughput can be

garnered without adding CPU resources. A CPU bound process can benefit from adding CPU

resources but not by faster I/O subsystems.

Random transactions (transactions in random order) are generally I/O bound while

transactions done in order by the clustering key are generally CPU bound.

As we will see, a good batch design is typically CPU bound. It’s much easier to add CPU

cycles than it is to tune the physical limits of an I/O bound subsystem.

© SoftBase, a division Fresche Solutions. All Rights Reserved.

Db2 is a registered trademark of IBM.

Pre-Fetch vs Random I/O

0

5

10

15

20

25

1 2

Sequential Pre-Fetch vs Random
I/O ms

RandomPre-fetch

Pre-fetch usually averages 2ms per page. Random access can be tuned to be less than 20ms

but usually rises with high activity against the same dataset. For very high activity it can be

100ms or more. Partitioning can be used to move the I/O to several datasets instead of a single

dataset.

m
ill

is
e
c
o
n
d
s

© SoftBase, a division Fresche Solutions. All Rights Reserved.

Db2 is a registered trademark of IBM.

Header

(Root)

Page

Non-

Leaf

Level 2

Non-

Leaf

Level 2

Non-

Leaf

Level 2

Non-

Leaf

Level 2

Non-

Leaf

Level 2

Non-

Leaf

Level 2

Non-

Leaf

Level 2

Non-

Leaf

Level 1

Non-

Leaf

Level 1

Non-

Leaf

Level 1

Non-

Leaf

Level 1

Leaf

Page

Leaf

Page

Leaf

Page

Leaf

Page

Leaf

Page

Leaf

Page

Leaf

Page

Leaf

Page

Data

Page

Data

Page

Data

Page

Data

Page

Data

Page

Data

Page

Data

Page

Data

Page

Data

Page

Data

Page

No Physical I/O *

* Assuming well tuned index bufferpools

Index

Key
Values

400000000

512987649

967832197

123456789

876432198

298654321

654321998

009834560

763458769

296785431

569878321

398765123

894398217

596428162

172787645

987629436

623498761

432917629

213965821

598347602

Tablespace

Random I/O

40 Physical I/O’s:

20 to the index leaf pages

20 to the tablespace pages

Might get some accidental hits in the

bufferpool

© SoftBase, a division Fresche Solutions. All Rights Reserved.

Db2 is a registered trademark of IBM.

Header

(Root)

Page

Non-

Leaf

Level 2

Non-

Leaf

Level 2

Non-

Leaf

Level 2

Non-

Leaf

Level 2

Non-

Leaf

Level 2

Non-

Leaf

Level 2

Non-

Leaf

Level 2

Non-

Leaf

Level 1

Non-

Leaf

Level 1

Non-

Leaf

Level 1

Non-

Leaf

Level 1

Leaf

Page

Leaf

Page

Leaf

Page

Leaf

Page

Leaf

Page

Leaf

Page

Leaf

Page

Leaf

Page

Data

Page

Data

Page

Data

Page

Data

Page

Data

Page

Data

Page

Data

Page

Data

Page

Data

Page

Data

Page

No Physical I/O *

* Assuming well tuned index bufferpools

Index

Key
Values

400000000

512987649

967832197

123456789

876432198

298654321

654321998

009834560

763458769

296785431

569878321

398765123

894398217

596428162

172787645

987629436

623498761

432917629

213965821

598347602

Tablespace

Sequential Pre-Fetch I/O

18 Pre-Fetch I/O’s

8 Index Leaf Pages

10 Tablespace Pages

Not only do they take 1/10 the

time, there are fewer I/Os !!!!

© SoftBase, a division Fresche Solutions. All Rights Reserved.

Db2 is a registered trademark of IBM.

Types of Pre-fetch

❑ Sequential Pre-fetch – S in the plan_table

❑ List Pre-fetch – L in the plan_table

❑ Dynamic Sequential Pre-fetch – determined at run time

❑ Skip Sequential Pre-fetch – determined at run time

Sequential pre-fetch happens for large result sets ordered by the clustering index or simple

tablespace scans.

List pre-fetch is to read the index to satisfy query results and mostly not a concern in this

discussion. The other types of pre-fetch are very useful for well designed batch applications.

Dynamic and Skip sequential pre-fetch happen when processes are done in the order of the

clustering index and do not require large result sets, but rather predictable access in the order

of the clustering index.

© SoftBase, a division Fresche Solutions. All Rights Reserved.

Db2 is a registered trademark of IBM.

❑ Use sequential pre-fetch to get an entire set of rows

❑ When sequential pre-fetch is not available – order transactions by the

clustering index to get dynamic or skip sequential pre-fetch

❑ If there are multiple clustering keys involved, split the process into as

many sub processes as necessary and extract / sort by each process’s

clustering key

❑ Plan for purge or archive ahead of time – delete before insert or drop of

partitions

As always:

❑ Verify access paths – to be the clustering index

❑ Checkpoint / Restart considerations

❑ Retry SQLCODE -911

What this means for good batch design

© SoftBase, a division Fresche Solutions. All Rights Reserved.

Db2 is a registered trademark of IBM.

Banking Data Model

We will see that data accumulated from the account

processing and posted to the customer is better

done by writing the key and the data to a flat file and

sorting by customer number before posting the data

to the customer table. An example might be the

customer balance.

The banking data model is fairly straight forward.

Customers and accounts for the most part.

Complexity is in the number and types of accounts

– DDA demand deposit (checking), savings, xmas

club, brokerage, auto loans, personal loans,

mortgages, etc.

Customer

Account

Customer n

Customer 2

Customer 1

Account n

Account 2

Account 1

Several child tables

clustered by customer

Several child tables

clustered by account

number

Banking Data Model

number

© SoftBase, a division Fresche Solutions. All Rights Reserved.

Db2 is a registered trademark of IBM.

Sample DDL and Program

CREATE TABLE VOLUME0.CUSTOMER

(CUST_N CHAR(10) NOT NULL

,CUST_TYPE_N SMALLINT NOT NULL

,CUST_ADDR1 VARCHAR(30) NOT NULL

,CUST_CITY CHAR(20) NOT NULL

,CUST_STATE CHAR(02) NOT NULL

,CUST_ZIP CHAR(10) NOT NULL

,CUST_PHONE DECIMAL(10) NOT NULL

,CUST_NAME VARCHAR(30) NOT NULL

,CUST_STUFF VARCHAR(100) NOT NULL

,CUST_START_DATE DATE NOT NULL

,CUST_BAL DECIMAL(15,2)

,PRIMARY KEY (CUST_N)

)

IN CUST0.VCUSTS00

;

CREATE UNIQUE INDEX

VOLUME0.CUST01CU

ON VOLUME0.CUSTOMER

(CUST_N)

USING STOGROUP SBSIX01

PRIQTY 400

SECQTY 40

ERASE NO FREEPAGE 0

PCTFREE 10

CLUSTER

BUFFERPOOL BP0

CLOSE NO

;

Sample Program reads from

transaction file and updates

the balance column of the

customer

This program was run several

times with and without the

transaction file sorted by

CUST_N

210000-UPDATE.

MOVE F-INPUT-CUST-NO TO W-CUST-NO

MOVE F-INPUT-CUST-BAL TO W-CUST-BAL.

EXEC SQL

UPDATE

VOLUME0.CUSTOMER

SET CUST_BAL = CUST_BAL + :W-CUST-BAL

WHERE CUST_N = :W-CUST-NO

END-EXEC.

© SoftBase, a division Fresche Solutions. All Rights Reserved.

Db2 is a registered trademark of IBM.

Sample Program - Results

DB2 SQL Debug Explain Access Paths Lines 1 of 3

Command ==> Scroll ==> PAGE

DB2 Subsystem ==> DBCG

S

SE T

UL P A LM Line Commands:

BE L M S B OO SORT SORT S - Select

C A IOE N J P F CD NEW COMP X - Expand

T N XPQ O TT AT IX MC M F E KE UJOG UJOG / - List Commands

-- -- -- --- -- -- -- -- --- - - - --- ---- ----

01 01 000 01 T I N 01 0 IX NNNN NNNN

__ TABLE: CUSTOMER

__ INDEX: CUST01CU

Conclusion:

Sorting the transaction file is

almost always worth the

effort. It may invoke Dynamic

Sequential Pre-Fetch or Skip

Sequential Pre-Fetch - even

when the Pre-Fetch column in

the plan_table is blank.

The Random case is I/O

bound because CPU time

and elapsed times are far

apart.

The Pre-Fetch case is CPU

bound because CPU time

and elapsed time are close.

Random

Pre-fetch

(Sorted) Improvement

Number of

Transactions

CPU

Time

Elapsed

Time

CPU

Time

Elapsed

Time CPU Time

Elapsed

Time

10,000,000 33.50 114.50 11.50 13.5 65.7% 88.2%

1,000,000 3.50 11.70 1.05 1.45 70.0% 87.6%

100,000 0.35 1.20 0.15 0.33 56.0% 72.5%

10,000 0.038 0.14 0.023 0.08 40.4% 42.9%

Commit Frequency - every 2,000 updates in all cases

Times in minutes

Run against 10,000,000 row table

© SoftBase, a division Fresche Solutions. All Rights Reserved.

Db2 is a registered trademark of IBM.

0

20

40

60

80

100

120

140

10,000 100,000 1,000,000 10,000,000

CPU and Elapsed Times

Elapsed Random Elapsed Sorted

CPU Random CPU Sorted

CPU and Elapsed Times

M
in

u
te

s

Transactions

© SoftBase, a division Fresche Solutions. All Rights Reserved.

Db2 is a registered trademark of IBM.

Utility Data Model

Customer

Account

Customer n

Customer 2

Customer 1

Account n

Account 2

Account 1

Several child tables

clustered by customer
number

Several child tables

clustered by premise

number

Utility Data Model

Premise

Service
Point

Service
Agreement

Several child tables
clustered by account

number

The utility company data model is a little more

complex. It introduces a premise and a many to

many relationship between premises and

accounts. In order to bill an account, premise

related data is required – especially meter

readings at the service point, but a lot of other data

as well.

Getting the premise related

data in the middle of billing

makes the whole billing process

I/O bound. Extracting the

premise related data needed in

premise order and sorting by

account number before billing is

started solves that. The data

can be loaded into a table or

kept in a flat file. The important

part is that it be sorted by

account number for billing

purposes.

© SoftBase, a division Fresche Solutions. All Rights Reserved.

Db2 is a registered trademark of IBM.

Key Assignment algorithms for Clustering

❑ Do Cascade clustering keys to child tables – all account related tables start

with account number

❑ Consider assigning keys so they cluster properly – include cycle as part of

the key – can limit flexibility and can impact good business practices. Still

need to track the premise across all the meter reading cycles etc.

❑ Consider assigning keys such that they are part of other keys. (eg - An

account number that has premise in it.) Can prevent good business

practices as well. Multiple premises billed on the same account. Service

points billed on different accounts.

❑ Need historical record of the changes in keys that must be processed

asynchronously (random I/O).

© SoftBase, a division Fresche Solutions. All Rights Reserved.

Db2 is a registered trademark of IBM.

Consider / Use Parallel Processing

Today’s z/OS mainframes have multiple CPU’s, each of which is capable of servicing one

and only one TCB (batch job) at a time. To garner even more throughput, we can take a

CPU bound process and divide it into key ranges for processing in multiple batch

processes so multiple engines can work at the same time. These key ranges can also be

used as partition ranges. This has the advantage of easing possible lock contention and

making utility processing and the application processing look at the same data. REORG

and Image Copy can be scheduled as part of the application process by partition.

The choice of ‘n’ depends largely on the number of CPU’s. Each billing instance could

process multiple parts so more CPU’s could be added at a later date.

Billing 1 Billing 2 Billing 3 Billing n

Index

Parts

Tablespace

Parts

0000000000

2000000000

2000000001

4000000000

4000000001

6000000000

?000000001

9999999999

© SoftBase, a division Fresche Solutions. All Rights Reserved.

Db2 is a registered trademark of IBM.

I/O Bound Parallel Processing

Why not use parallel processing against I/O bound processes instead of CPU

bound processes?

❑ Prone to deadlocks -911 especially if the synchronous I/O (random I/O) is for

updates

❑ Might require row level locking to resolve deadlocks

❑ Still may get -911 with duplicates allowed indexes or updates across multiple

clustering keys

❑ Can still be a solution if properly designed but starts to look like CICS

transactions rather than batch

❑ Bufferpool support becomes a challenge due to all the synchronous I/O

(random I/O) – more random I/O against the same tables can cause that

20ms number to increase dramatically. Range partitioning can help.

© SoftBase, a division Fresche Solutions. All Rights Reserved.

Db2 is a registered trademark of IBM.

Additional Performance Considerations

❑ Use shorter keys – integer or decimal instead of character keys – makes for fewer levels and

smaller indexes as well as more rows per page

❑ Pad duplicates allowed indexes with primary key to make them unique and to avoid large rid chain

updates

❑ Pass data in linkage rather than using SQL to retrieve it every time it is needed. For example, the

customer and account data is needed in most billing programs – keep a copy in storage and pass

it around rather than getting it over and over

❑ Combine processes that access the same data

❑ Use new SQL improvements – outer join, WITH expressions, multi-row MERGE, multi-row

INSERT, multi-row FETCH

Remember:

1. Every SQL call avoided is potential CPU and I/O savings

2. Many of these improvements are against a single table or a single SQL – while the localized

improvement can be huge, the overall improvement can be far less dramatic. Sometimes they

can even make matters worse. Adding multi-row fetch to a well tuned cursor in an application that

also has an I/O bound cursor can make it even more I/O bound.

© SoftBase, a division Fresche Solutions. All Rights Reserved.

Db2 is a registered trademark of IBM.

MERGE Improvement over Insert / Update

0

1

2

3

4

5

6

7

8

Insert / Update Merge Insert / Update Merge

Random Random Sorted Sorted

Merge vs Insert / Update

Elapsed Minutes CPU Minutes

55%

32%
23%

4%

30%

34%

8%

53%

17%

36%

M
in

u
te

s

Each of the 4 tests had:

500K Inserts

500K Updates

9M Result Table

© SoftBase, a division Fresche Solutions. All Rights Reserved.

Db2 is a registered trademark of IBM.

Single Row Fetch vs Multi-Row Fetch

CREATE TABLE VOLUME0.CUSTOMER

(CUST_N CHAR(10) NOT NULL

,CUST_TYPE_N SMALLINT NOT NULL

,CUST_ADDR1 VARCHAR(30) NOT NULL

,CUST_CITY CHAR(20) NOT NULL

,CUST_STATE CHAR(02) NOT NULL

,CUST_ZIP CHAR(10) NOT NULL

,CUST_PHONE DECIMAL(10) NOT NULL

,CUST_NAME VARCHAR(30) NOT NULL

,CUST_STUFF VARCHAR(100) NOT NULL

,CUST_START_DATE DATE NOT NULL

,CUST_BAL DECIMAL(15,2)

,PRIMARY KEY (CUST_N)

)

IN CUST0.VCUSTS00

CCSID EBCDIC

;

CREATE UNIQUE INDEX VOLUME0.CUST01CU

ON VOLUME0.CUSTOMER

(CUST_N)

USING STOGROUP SBSIX01

PRIQTY 400

SECQTY 40

ERASE NO

FREEPAGE 0

PCTFREE 10

CLUSTER

BUFFERPOOL BP0

CLOSE NO

;

CREATE TABLE VOLUME0.ACCOUNT

(CUST_N CHAR(10) NOT NULL

,ACCT_N SMALLINT NOT NULL

,ACCT_ADDR1 VARCHAR(30) NOT NULL

,ACCT_CITY CHAR(20) NOT NULL

,ACCT_STATE CHAR(02) NOT NULL

,ACCT_ZIP CHAR(10) NOT NULL

,ACCT_PHONE DECIMAL(10) NOT NULL

,ACCT_NAME VARCHAR(30) NOT NULL

,ACCT_NICKNAME VARCHAR(100) NOT NULL

,ACCT_NOTES VARCHAR(300) NOT NULL

,PRIMARY KEY (CUST_N,ACCT_N)

,FOREIGN KEY FK1 (CUST_N) REFERENCES

VOLUME0.CUSTOMER ON DELETE RESTRICT

)

IN CUST0.VACCT00

CCSID EBCDIC

;

CREATE UNIQUE INDEX VOLUME0.ACCT01CU

ON VOLUME0.ACCOUNT

(CUST_N ASC

,ACCT_N ASC

)

USING STOGROUP SBSIX01

ERASE NO

FREEPAGE 0

PCTFREE 10

CLUSTER

BUFFERPOOL BP0

CLOSE NO

PIECESIZE 2G

;

Access to account via customer

number is still clustered

Because the key was cascaded

CREATE TABLE VOLUME0.ACCOUNT_1

(ACCT_N CHAR(10) NOT NULL

,CUST_N CHAR(10) NOT NULL

,ACCT_ADDR1 VARCHAR(30) NOT NULL

,ACCT_CITY CHAR(20) NOT NULL

,ACCT_STATE CHAR(02) NOT NULL

,ACCT_ZIP CHAR(10) NOT NULL

,ACCT_PHONE DECIMAL(10) NOT NULL

,ACCT_NAME VARCHAR(30) NOT NULL

,ACCT_NICKNAME VARCHAR(100) NOT NULL

,ACCT_NOTES VARCHAR(300) NOT NULL

,PRIMARY KEY (ACCT_N)

,FOREIGN KEY FK2 (CUST_N) REFERENCES

VOLUME0.CUSTOMER ON DELETE RESTRICT

)

IN CUST0.VACCT01

CCSID EBCDIC

;

CREATE UNIQUE INDEX VOLUME0.ACCT1ACU

ON VOLUME0.ACCOUNT_1

(ACCT_N ASC

)

USING STOGROUP SBSIX01

ERASE NO

FREEPAGE 0

PCTFREE 10

CLUSTER

BUFFERPOOL BP0

CLOSE NO

PIECESIZE 2G

;

CREATE INDEX VOLUME0.ACCT1BNU

ON VOLUME0.ACCOUNT_1

(CUST_N ASC

,ACCT_N ASC

)

USING STOGROUP SBSIX01

ERASE NO

FREEPAGE 0

PCTFREE 10

BUFFERPOOL BP0

CLOSE NO

PIECESIZE 2G ;

Access to

account via

customer

number is

NOT

clustered

© SoftBase, a division Fresche Solutions. All Rights Reserved.

Db2 is a registered trademark of IBM.

Single Row Fetch vs Multi-Row Fetch

MRF array CPU Elapsed
CPU

Improvement

Elapsed

Improvement

Clustered 0 – no mrf 2.73 3.5

100 2.46 3.2 9.9% 8.6%

Random 0 – no mrf 5.88 10.3

100 5.56 9.9 5.4% 3.9%

In this case, we got some improvement from MRF even in the random test. Had the

random access been even worse, we might have even seen a worsening with MRF

because it drives the I/O bound process even harder making it even more I/O bound.

Increasing the buffer size to 1,000 yielded substantially similar results as 100.

Program Opens a cursor on first 500,000 customers and for each row fetched – fetches

the corresponding account rows which on average are 5 for a total of 2.5 million account

rows.

Obviously, we could make this an outer join and get some performance benefit, but here

we are attempting to show the improvement from multi-row fetch.

© SoftBase, a division Fresche Solutions. All Rights Reserved.

Db2 is a registered trademark of IBM.

Nice to Do – all the additional performance considerations

❑ Use shorter keys – integer or decimal instead of character keys – makes for fewer levels and

smaller indexes as well as more rows per page

❑ Pad duplicates allowed indexes with primary key to make them unique and to avoid large rid

chain updates

❑ Pass data in linkage rather than using SQL to retrieve it every time it is needed. For example, the

customer and account data is needed in most billing programs – keep a copy in storage and pass

it around rather than getting it over and over

❑ Combine processes that access the same data

❑ Use new SQL improvements – outer join, WITH expressions, MERGE, multi-row INSERT, multi-

row FETCH, paging for multi-column keys WHERE (AC,EX,LN) > (:AC,:EX,:LN)

Remember:

1. Every SQL call avoided is potential CPU and I/O savings

2. Many of these improvements are against a single table or a single SQL – while the localized

improvement can be huge, the overall improvement can be far less dramatic

© SoftBase, a division Fresche Solutions. All Rights Reserved.

Db2 is a registered trademark of IBM.

Must do’s

Implementing the first 2 can turn an I/O bound process into

a CPU bound process that can run 10 times faster or more.

The third, offers improvement factors up to the number of

CPU’s available – typically 5 times or more.

1. Process in clustering index order

2. Extract and sort needed data in clustering

index order to remove random I/O

3. Use Parallel Processing to get multiple CPU’s

involved in the process

© SoftBase, a division Fresche Solutions. All Rights Reserved.

Db2 is a registered trademark of IBM.

Thank you!

Thanks for you time today!

Questions?

www.softbase.com

800-669-7076

http://www.softbase.com/

